miércoles, 6 de noviembre de 2013

TRABAJO DE BIOLOGIA

PARTE DE MI TRABAJO:

Se llama cambio climático a la modificación del clima con respecto al historial climático a una escala global o regional. Tales cambios se producen a muy diversas escalas de tiempo y sobre todos los parámetros meteorológicos: temperatura, presión atmosférica, precipitaciones, nubosidad, etc. En teoría, son debidos tanto a causas naturales (Crowley y North, 1988) como antropogénicas (OreskeS, 2004).
El término suele usarse de manera poco apropiada, para hacer referencia tan solo a los cambios climáticos que suceden en el presente, utilizándolo como sinónimo de calentamiento global. La Convención Marco de las Naciones Unidas sobre el Cambio Climático usa el término «cambio climático» solo para referirse al cambio por causas humanas:
Por "cambio climático" se entiende un cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante períodos comparables.
Artículo 1, párrafo 2
Recibe el nombre de «variabilidad natural del clima», pues se produce constantemente por causas naturales. En algunos casos, para referirse al cambio de origen humano se usa también la expresión «cambio climático antropogénico».
Además del calentamiento global, el cambio climático implica cambios en otras variables como las lluvias y sus patrones, la cobertura de nubes y todos los demás elementos del sistema atmosférico. La complejidad del problema y sus múltiples interacciones hacen que la única manera de evaluar estos cambios sea mediante el uso de modelos computacionales que simulan la física de la atmósfera y de los océanos. La naturaleza caótica de estos modelos hace que en sí tengan una alta proporción de incertidumbre (Stainfo
Por "cambio climático" se entiende un cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante períodos comparables.
Artículo 1, párrafo 2
Recibe el nombre de «variabilidad natural del clima», pues se produce constantemente por causas naturales. En algunos casos, para referirse al cambio de origen humano se usa también la expresión «cambio climático antropogénico».
Además del calentamiento global, el cambio climático implica cambios en otras variables como las lluvias y sus patrones, la cobertura de nubes y todos los demás elementos del sistema atmosférico. La complejidad del problema y sus múltiples interacciones hacen que la única manera de evaluar estos cambios sea mediante el uso de modelos computacionales que simulan la física de la atmósfera y de los océanos. La naturaleza caótica de estos modelos hace que en sí tengan una alta proporción de incertidumbre (Stainforth et ál., 2005) (Roe y Baker, 2007), aunque eso no es óbice para que sean capaces de prever cambios significativos futuros (Schnellhuber, 2008) (Knutti y Hegerl, 2008) que tengan consecuencias tanto económicas (Stern, 2008) como las ya observables a nivel biológico (Walther et ál., 2002)(Hughes, 2001).

Causas de los cambios climáticos


Temperatura en la superficie terrestre al comienzo de la primavera de 2000.
El clima es un promedio, a una escala de tiempo, dada del tiempo atmosférico. Los distintos tipos climáticos y su localización en la superficie terrestre obedecen a ciertos factores, siendo los principales, la latitud geográfica, la altitud, la distancia al mar, la orientación del relieve terrestre con respecto a la insolación (vertientes de solana y umbría) y a la dirección de los vientos (vertientes de Sotavento y barlovento) y por último, las corrientes marinas. Estos factores y sus variaciones en el tiempo producen cambios en los principales elementos constituyentes del clima que también son cinco: temperatura atmosférica, presión atmosférica, vientos, humedad y precipitaciones.
Pero existen fluctuaciones considerables en estos elementos a lo largo del tiempo, tanto mayores cuanto mayor sea el período de tiempo considerado. Estas fluctuaciones ocurren tanto en el tiempo como en el espacio. Las fluctuaciones en el tiempo son muy fáciles de comprobar: puede presentarse un año con un verano frío (por ejemplo, el sector del turismo llegó a tener fuertes pérdidas hace unos años en las playas españolas debido a las bajas temperaturas registradas y al consiguiente descenso del número de visitantes, y el invierno del 2009 al 2010 ha sido mucho más frío de lo normal, no solo en España, sino en toda Europa). También las fluctuaciones espaciales son aún más frecuentes y comprobables: los efectos de lluvias muy intensas en la zona intertropical del hemisferio sur en América (inundaciones en el Perú y en el sur del Brasil) se presentaron de manera paralela a lluvias muy escasas en la zona intertropical del Norte de América del Sur (especialmente en Venezuela y otras áreas vecinas).
Un cambio en la emisión de radiaciones solares, en la composición de la atmósfera, en la disposición de los continentes, en las corrientes marinas o en la órbita de la Tierra puede modificar la distribución de energía y el equilibrio térmico, alterando así profundamente el clima cuando se trata de procesos de larga duración.

Animación del mapa mundial de la temperatura media mensual del aire de la superficie.
Estas influencias se pueden clasificar en externas e internas a la Tierra. Las externas también reciben el nombre de forzamientos, dado que normalmente actúan de manera sistemática sobre el clima, aunque también las hay aleatorias como es el caso de los impactos de meteoritos (astroblemas). La influencia humana sobre el clima en muchos casos se considera forzamiento externo ya que su influencia es más sistemática que caótica pero también es cierto que el Homo sapiens pertenece a la propia biosfera terrestre pudiéndose considerar también como forzamientos internos según el criterio que se use. En las causas internas se encuentran una mayoría de factores no sistemáticos o caóticos. Es en este grupo donde se encuentran los factores amplificadores y moderadores que actúan en respuesta a los cambios introduciendo una variable más al problema ya que no solo hay que tener en cuenta los factores que actúan sino también las respuestas que dichas modificaciones pueden conllevar. Por todo eso al clima se le considera un sistema complejo. Según qué tipo de factores dominen la variación del clima será sistemática o caótica. En esto depende mucho la escala de tiempo en la que se observe la variación ya que pueden quedar patrones regulares de baja frecuencia ocultos en variaciones caóticas de alta frecuencia y viceversa. Puede darse el caso de que algunas variaciones caóticas del clima no lo sean en realidad y que sean catalogadas como tales por un desconocimiento de las verdaderas razones causales de las mismas.

Influencias externas

Variaciones solares


Variaciones de la luminosidad solar a lo largo del ciclo de las manchas solares.
El Sol es una estrella que presenta ciclos de actividad de once años. Ha tenido períodos en los cuales no presenta manchas solares, como el mínimo de Maunder que fue de 1645 a 1715 en los cuales se produjo una mini era de Hielo.
La temperatura media de la Tierra depende, en gran medida, del flujo de radiación solar que recibe. Sin embargo, debido a que ese aporte de energía apenas varía en el tiempo, no se considera que sea una contribución importante para la variabilidad climática a corto plazo (Crowley y North, 1988). Esto sucede porque el Sol es una estrella de tipo G en fase de secuencia principal, resultando muy estable. El flujo de radiación es, además, el motor de los fenómenos atmosféricos ya que aporta la energía necesaria a la atmósfera para que estos se produzcan.
Sin embargo, muchos astrofísicos consideran que la influencia del Sol sobre el clima está más relacionado con la longitud de cada ciclo, la amplitud del mismo, la cantidad de manchas solares, la profundidad de cada mínimo solar, y la ocurrencia de dobles mínimos solares separados por pocos años. Sería la variación en los campos magnéticos y la variabilidad en el viento solar (y su influencia sobre los rayos cósmicos que llegan a la Tierra) quienes tienen una fuerte acción sobre distintos componentes del clima como las diversas oscilaciones oceánicas, los eventos el Niño y La Niña, las corrientes de chorro polares, la Oscilación casi bianual de la corriente estratosférica sobre el ecuador, etc. Por otro lado, a largo plazo las variaciones se hacen apreciables ya que el Sol aumenta su luminosidad a razón de un 10% cada 1000 millones de años. Debido a este fenómeno, en la Tierra primitiva que sustentó el nacimiento de la vida, hace 3800 millones de años, el brillo del Sol era un 70% del actual.
Las variaciones en el campo magnético solar y, por tanto, en las emisiones de viento solar, también son importantes, ya que la interacción de la alta atmósfera terrestre con las partículas provenientes del Sol puede generar reacciones químicas en un sentido u otro, modificando la composición del aire y de las nubes así como la formación de estas. Algunas hipótesis plantean incluso que los iones producidos por la interacción de los rayos cósmicos y la atmósfera de la Tierra juegan un rol en la formación de núcleos de condensación y un correspondiente aumento en la formación de nubes. De este modo, la correlación entre la ionización cósmica y formación de nubes se observa fuertemente en las nubes a baja altitud y no en las nubes altas (cirrus) como se creía, donde la variación en la ionización es mucho más grande (Svensmark, 2007).

Variaciones orbitales

Si bien la luminosidad solar se mantiene prácticamente constante a lo largo de millones de años, no ocurre lo mismo con la órbita terrestre. Esta oscila periódicamente, haciendo que la cantidad media de radiación que recibe cada hemisferio fluctúe a lo largo del tiempo, y estas variaciones provocan las pulsaciones glaciares a modo de veranos e inviernos de largo período. Son los llamados períodos glaciales e interglaciales. Hay tres factores que contribuyen a modificar las características orbitales haciendo que la insolación media en uno y otro hemisferio varíe aunque no lo haga el flujo de radiación global. Se trata de la precesión de los equinoccios, la excentricidad orbital y la oblicuidad de la órbita o inclinación del eje terrestre.

Impactos de meteoritos

En raras ocasiones ocurren eventos de tipo catastrófico que cambian la faz de la Tierra para siempre. El último de tales acontecimientos catastróficos sucedió hace 65 millones de años. Se trata de los impactos de meteoritos de gran tamaño. Es indudable que tales fenómenos pueden provocar un efecto devastador sobre el clima al liberar grandes cantidades de CO2, polvo y cenizas a la atmósfera debido a la quema de grandes extensiones boscosas. De la misma manera, tales sucesos podrían intensificar la actividad volcánica en ciertas regiones. En el suceso de Chicxulub (en Yucatán, México) hay quien relaciona el período de fuertes erupciones en volcanes de la India con el hecho de que este continente se sitúe cerca de las antípodas del cráter de impacto. Tras un impacto suficientemente poderoso la atmósfera cambiaría rápidamente, al igual que la actividad geológica del planeta e, incluso, sus características orbitales.

Influencias internas

La deriva continental


Pangea.
La Tierra ha sufrido muchos cambios desde su origen hace 4600 millones de años. Hace 225 millones de años todos los continentes estaban unidos, formando lo que se conoce como Pangea, y había un océano universal llamado Panthalassa. La tectónica de placas ha separado los continentes y los ha puesto en la situación actual. El Océano Atlántico se ha ido formando desde hace 200 millones de años.
La deriva continental es un proceso sumamente lento, por lo que la posición de los continentes fija el comportamiento del clima durante millones de años. Hay dos aspectos a tener en cuenta. Por una parte, las latitudes en las que se concentra la masa continental: si las masas continentales están situadas en latitudes bajas habrá pocos glaciares continentales y, en general, temperaturas medias menos extremas. Así mismo, si los continentes se hallan muy fragmentados habrá menos continentalidad.
Un proceso que demuestra fehacientemente la influencia a largo plazo de la deriva de los continentes (o de igual manera, la tectónica de placas) sobre el clima es la existencia de yacimientos de carbón en las islas Svaldbard o Spitbergen, en una latitud donde ahora no existen árboles por el clima demasiado frío: la idea que explica estos yacimientos es que el movimiento de la placa donde se encuentran dichas islas se produjo hacia el norte desde una ubicación más meridional con un clima más cálido.

La composición atmosférica

La atmósfera primitiva, cuya composición era parecida a la nebulos inicial, perdió sus componentes más ligeros, el hidrógeno diatómico (H2) y el helio (He), para ser sustituidos por gases procedentes de las emisiones volcánicas del planeta o sus derivados, especialmente dióxido de carbono (CO2), dando lugar a una atmósfera de segunda generación. En dicha atmósfera son importantes los efectos de los gases de invernadero emitidos de manera natural en volcanes. Por otro lado, la cantidad de óxidos de azufre (SO, SO2 y SO3) y otros aerosoles emitidos por los volcanes contribuyen a lo contrario, a enfriar la Tierra. Del equilibrio entre ambos efectos resulta un balance radiativo determinado.
Con la aparición de la vida en la Tierra se sumó como agente incidente el total de organismos vivos, la biosfera. Inicialmente, los organismos autótrofos por fotosíntesis o quimiosíntesis capturaron gran parte del abundante CO2 de la atmósfera primitiva, a la vez que empezaba a acumularse oxígeno (a partir del proceso abiótico de la fotólisis del agua). La aparición de la fotosíntesis oxigénica, que realizan las cianobacterias y sus descendientes los plastos, dio lugar a una presencia masiva de oxígeno (O2) como la que caracteriza la atmósfera actual, y aún mayor. Esta modificación de la composición de la atmósfera propició la aparición de formas de vida nuevas, aeróbicas que se aprovechaban de la nueva composición del aire. Aumentó así el consumo de oxígeno y disminuyó el consumo neto de CO2 llegándose al equilibrio o clímax, y formándose así la atmósfera de tercera generación actual. Este delicado equilibrio entre lo que se emite y lo que se absorbe se hace evidente en el ciclo del CO2, la presencia del cual fluctúa a lo largo del año según las estaciones de crecimiento de las plantas.

Las corrientes oceánicas


Temperatura del agua en la Corriente del Golfo.
Las corrientes oceánicas, o marinas, son factores reguladores del clima que actúan como moderador, suavizando las temperaturas de regiones como Europa y las costas occidentales de Canadá y Alaska. La climatología ha establecido nítidamente los límites térmicos de los distintos tipos climáticos que se han mantenido a través de todo ese tiempo. No se habla tanto de los límites pluviométricos de dicho clima porque los cultivos mediterráneos tradicionales son ayudados por el regadío y cuando se trata de cultivos de secano, se presentan en parcelas más o menos planas (cultivo en terrazas) con el fin de hacer más efectivas las lluvias propiciando la infiltración en el suelo. Además los cultivos típicos del matorral mediterráneo están adaptados a cambios meteorológicos mucho más intensos que los que se han registrado en los últimos tiempos: si no fuera así, los mapas de los distintos tipos climáticos tendrían que rehacerse: un aumento de unos 2 grados celsius en la cuenca del mediterráneo significaría la posibilidad de aumentar la latitud de muchos cultivos unos 200 km más al norte (como sería el cultivo de la naranja ya citado). Desde luego, esta idea sería inviable desde el punto de vista económico, ya que la producción de naranja es, desde hace bastante tiempo, excedentaria, no por el aumento del cultivo a una mayor latitud (lo que corroboraría en cierto modo la idea del calentamiento global) sino por el desarrollo de dicho cultivo en áreas reclamadas al desierto (Marruecos y otros países) gracias al riego en goteo y otras técnicas de cultivo.

El campo magnético terrestre

De la misma manera que el viento solar puede afectar al clima directamente, las variaciones en el campo magnético terrestre pueden afectarlo de manera indirecta ya que, según su estado, detiene o no las partículas emitidas por el Sol. Se ha comprobado que en épocas pasadas hubo inversiones de polaridad y grandes variaciones en su intensidad, llegando a estar casi anulado en algunos momentos. Se sabe también que los polos magnéticos, si bien tienden a encontrarse próximos a los polos geográficos, en algunas ocasiones se han  proximado al Ecuador. Estos sucesos tuvieron que influir en la manera en la que el viento solar llegaba a la atmósfera terrestre.

Los efectos antropogénicos.

Una hipótesis dice que el ser humano podría haberse convertido en uno de los agentes climáticos, incorporándose a la lista hace relativamente poco tiempo. Su influencia comenzaría con la deforestación de bosques para convertirlos en tierras de cultivo y pastoreo, pero en la actualidad su influencia sería mucho mayor al producir la emisión abundante de gases que, según algunos autores, producen un efecto invernadero: CO2 en fábricas y medios de transporte y metano en granjas de ganadería intensiva y arrozales. Actualmente tanto las emisiones se han incrementado hasta tal nivel que parece difícil que se reduzcan a corto y medio plazo, por las implicaciones técnicas y económicas de las actividades involucradas.
Los aerosoles de origen antrópico, especialmente los sulfatos provenientes de los combustibles fósiles ejercen una influencia reductora de la temperatura (Charlson et ál., 1992). Este hecho, unido a la variabilidad natural del clima, sería la causa que explica el "valle" que se observa en el gráfico de temperaturas en la zona central del siglo XX.
La alta demanda de energía por parte de los países desarrollados, son la principal causa del calentamiento global, debido a que sus emisiones contaminantes son las mayores del planeta. Esta demanda de energía hace que cada vez más se extraigan y consuman los recursos energéticos como el petróleo.

TRABAJO DE BIOLOGIA


TRABAJO DE BIOLOGIA


1- Formación de la tierra. Evolución hasta el estado actual.
 

La tierra que hoy conocemos tiene un aspecto muy distinto del que tenía poco después de su nacimiento, hace unos 4.500 millones de años. Entonces era un amasijo de rocas conglomeradas cuyo interior se calentó y fundió todo el planeta. Con el tiempo la corteza se secó y se volvió sólida. En las partes más bajas se acumuló el agua mientras que, por encima de la corteza terrestre, se formaba una capa de gases, la atmósfera.

Agua, tierra y aire empezaron a inteactuar de forma bastante violenta ya que, mientras tanto, la lava manaba en abundancia por múltiples grietas de la corteza, que se enriquecía y transformaba gracias a toda esta actividad.

Según los científicos, hace unos 15.000 millones de años se produjo una gran explosión, el Big Bang. La fuerza desencadenada impulsó la materia, extraordinariamente densa, en todas direcciones, a una velocidad próxima a la de la luz. Con el tiempo, y a medida que se alejaban del centro y reducían su velocidad, masas de esta materia se quedaron más próximas para formar, más tarde, las galaxias.

No sabemos qué ocurrió en el lugar que ahora ocupamos durante los primeros 10.000 millones de años, si hubo otros soles, otros planetas, espacio vacio o, simplemente, nada. Hacia la mitad de este periodo, o quizás antes, debió formarse una galaxia.

Cerca del límite de esta galaxia, que hoy llamamos Vía Láctea, una porción de materia se condensó en una nube más densa hace unos 5.000 millones de años. Esto ocurría en muchas partes, pero esta nos interesa especialmente. Las fuerzas gravitatorias hicieron que la mayor parte de esta masa formase una esfera central y, a su alrededor, quedasen girando masas mucho más pequeñas.

La masa central se convirtió eu una esfera incandescente, una estrella, nuestro Sol. Las pequeñas también se condensaron mientras describían órbitas alrededor del Sol, formando los planetas y algunos satélites. Entre ellos, uno quedó a la distancia justa y con el tamaño adecuado para tener agua en estado líquido y retener una importante envoltura gaseosa. Naturalmente, este planeta es la Tierra.

2- Dinámica atmosférica. Fenómenos atmosféricos.

Se llama dinámica de la atmósfera o dinámica atmosférica a una parte de la Termodinámica que estudia las leyes físicas y los flujos de energía involucrados en los procesos atmosféricos. Estos procesos presentan una gran complejidad por la enorme gama de interacciones posible tanto en el mismo seno de la atmósfera como con las otras partes (sólida y líquida) de nuestro planeta.
La termodinámica establece tres leyes, además de lo que se conoce como principio cero de la termodinámica. Estas tres leyes rigen en todo el mundo físico-natural y constituyen la base científica de los procesos que constituyen el campo de la dinámica de la atmósfera.
La atmósfera es la capa gaseosa que rodea a la Tierra envolviendo tanto a la parte sólida (litosfera) como líquida (hidrosfera) de nuestro planeta en razón a su menor densidad. Está compuesta por una mezcla de gases que forma el aire, cuyos principales componentes son el nitrógeno (78 %), el oxígeno (21 %) y otros gases que, en conjunto, sólo estos gases más escasos tienen una gran importancia el vapor de agua (que entra a formar parte importante del ciclo hidrológico) y el CO2, dióxido de carbono que apenas llega a formar el 0,03 % del volumen total de la atmósfera, aunque constituye la "materia prima" con la que están formados todos los seres vivos.
La atmósfera está dividida en varias capas concéntricas que son, a partir de la superficie terrestre hacia arriba, la troposfera, la estratosfera, la mesosfera, la termosfera o ionosfera y la exosfera. Se denomina tropopausa a la discontinuidad existente entre la troposfera y la estratosfera, una franja caracterizada por un cambio bastante brusco en lo que a características físicas se refiere. La tropopausa alcanza una mayor altura de la zona ecuatorial (casi 20 km) y una mínima en las zonas polares (5-8 km) y esta diferencia se debe al abultamiento ecuatorial de la atmósfera producido por la fuerza centrífuga del movimiento de rotación terrestre, el cual tiene como contrapartida un achatamiento polar por la misma razón, es decir, por la menor fuerza centrífuga (y la mayor fuerza centrípeta por su menor distancia al centro de la Tierra) existente en las zonas polares. Como corolario obvio, la altura de la troposfera disminuye desde el ecuador hasta los polos, es decir, a mayor latitud, menor espesor y viceversa.
3- Cambio climático.( Aceitero y Emilio)
4- Volcanes.
Un volcán (del nombre del dios mitológico romano Vulcano) es una estructura geológica por la que emerge el magma (roca fundida) en forma de lava, ceniza volcánica y gases del interior del planeta. El ascenso ocurre generalmente en episodios de actividad violenta denominados erupciones, los que pueden variar en intensidad, duración y frecuencia, desde suaves corrientes de lava hasta explosiones extremadamente destructivas. En algunas ocasiones los volcanes adquieren una característica de forma cónica por la presión del magma subterráneo y la acumulación de material de erupciones anteriores. En la cumbre se encuentra su cráter o caldera.
Los volcanes existen tanto en la Tierra como en otros planetas y satélites, algunos de los cuales están formados de materiales que consideramos "fríos"; los criovolcanes. En ellos el hielo actúa como roca mientras que la fría agua líquida interna actúa como el magma; esto ocurre -por ejemplo- en la luna de Júpiter llamada Europa.
Por lo general los volcanes se forman en los límites de placas tectónicas, aunque existen llamados puntos calientes, los que no se atienen a los contactos entre placas. Un ejemplo clásico son las islas Hawái.
Los volcanes pueden tener muchas formas y despedir variados productos. Algunas formas comunes son las de estratovolcán, cono de escoria, caldera volcánica y volcán en escudo. Existen volcanes submarinos, así como otros que alcanzan alturas sobre los 6000 metros sobre el nivel del mar. Los volcanes submarinos son particularmente numerosos al ubicarse una gran cantidad de ellos a lo largo de las dorsales oceánicas.
El volcán más alto del mundo es el Nevado Ojos del Salado, en Argentina y Chile, siendo además la segunda cumbre más alta de los hemisferios sur y Occidental (sólo superado por el también argentino Cerro Aconcagua.
5- Terremotos.
Un terremoto[(del latín: terra «tierra» y motus «movimiento»), también llamado seísmo o sismo  es un fenómeno de sacudida brusca y pasajera de la corteza terrestre producido por la liberación de energía acumulada en forma de ondas sísmicas. Los más comunes se producen por la ruptura de fallas geológicas. También pueden ocurrir por otras causas como, por ejemplo, fricción en el borde de placas tectónicas, procesos volcánicos o incluso ser producidos por el hombre al realizar pruebas de detonaciones nucleares subterráneas.
El punto de origen de un terremoto se denomina hipocentro. El epicentro es el punto de la superficie terrestre directamente sobre el hipocentro. Dependiendo de su intensidad y origen, un terremoto puede causar desplazamientos de la corteza terrestre, corrimientos de tierras, tsunamis o actividad volcánica. Para la medición de la energía liberada por un terremoto se emplean diversas escalas entre las que la escala de Richter es la más conocida y utilizada en los medios de comunicación.
6- Paisajes y relieves.
El relieve terrestre hace referencia a las formas que tiene la corteza terrestre o litosfera en la superficie, tanto al referirnos a las tierras emergidas, como al relieve submarino, es decir, al fondo del mar. Es el objeto de estudio de la Geomorfología y de la Geografía Física, sobre todo, al referirnos a las tierras continentales e insulares. La geomorfología es una de las ramas de la Geología, que se engloba con otras ciencias dentro de las Ciencias de la Tierra.
Paisaje (extensión de terreno que se ve desde un sitio),es un concepto que se utiliza de manera diferente por varios campos de estudio, aunque todos los usos del término llevan implícita la existencia de un sujeto observador y de un objeto observado (el terreno) del que se destacan fundamentalmente sus cualidades visuales y espaciales.
7- Agentes geológicos internos.
 También conocidos como agentes exogenitos. Los procesos que tienen lugar por debajo de la superficie de nuestro planeta, su origen se da n la liberación de su calor interno, y se manifiestan en una serie de fenómenos, algunos de los cuales pueden observarse directamente en la superficie, como es el caso del volcanismo.

Esta liberación de calor puede darse de dos formas, por radiación y por convección.
La radiación es la liberación del calor transmitido desde zonas calientes a zonas frías, y no implica movimiento de materia solo transmisión del calor.
En la convección el calor se transmite en forma de movimiento de lo caliente hacia zonas frías.

Nuestro planeta, cuyo interior se encuentra a altas temperaturas. libera su calor de estas dos formas. Por un lado, emite calor hacia el espacio, con lo que la temperatura superficial es un compromiso entre el calor que el propio planeta libera y el producido por la irradiación solar, y esta temperatura aumenta con la profundidad (gradiente geotérmico). Por otra parte, la convección produce un lentísimo movimiento de las rocas de zonas profundas hacia la superficie, que fuerza el movimiento de las rígidas placas litosféricas, lo que conocemos con el nombre de tectónica de placas.

La combinación de estos dos mecanismos y las interacciones que se producen entre las placas, es responsable de los fenómenos internos del planeta: fenómenos sísmicos (terremotos), fenómenos magmáticos como el volcanismo, y fenómenos de transformación de las rocas al quedar sometidas a altas presiones y temperaturas (metamorfismo). Los fenómenos sísmicos no dan origen a rocas ni a yacimientos, pero los otros dos si.
8- Agentes geológicos externos.
La energía que proviene del Sol es la responsable de la aparición de los agentes geológicos externos.
Ya que la Tierra es redonda, algunas zonas reciben más energía que otras. Los movimientos que se producen en la Atmósfera y la Hidrosfera movilizan la energía desde las zonas más cálidas a las más frías. Estos movimientos son los responsables del modelado del relieve del Planeta, porque producen la intervención de los agentes geológicos externos.
Los agentes geológicos externos pueden ser:
  • Pasivos, que producen la disgregación de la roca, pero no movilizan esos fragmentos. Son los agentes atmosféricos.
  • Activos, que son aquellos capaces de fragmentar una roca y movilizar los fragmentos. Son el agua en todas las formas en que se presenta en la Naturaleza y el viento.
9-Ciclo de las rocas.
El denominado Ciclo de las Rocas ( Figura en el recuadro arriba) , es una serie de procesos geológicos por los cuales uno de los tres grandes grupos de rocas se forma a partir de los otros dos.
Este ciclo podría empezar con la generación de magma en el interior de la Tierra, donde las temperaturas y presiones son lo suficientemente altas como para fundir las rocas preexistentes. Esta actividad interna de la Tierra se la denomina el episodio plutónico (esto deriva de Plutón, el dios romano de las profundidades).
x
 
El episodio plutónico significa que las rocas preexistentes son fundidas; los minerales, destruidos, y su composición química es uniformada, dando como resultado un líquido caliente denominado magma. Este, al ser de menor densidad tenderá a ascender, enfriarse y cristalizar, formando una roca ígnea plutónica. Esta última puede convertirse en roca metamórfica o ser destruida por la erosión, en cuyo caso puede llegar a constituir más tarde una roca sedimentaria.
Una roca en particular no tiene por qué recorrer inevitablemente este ciclo. No es necesario de que toda roca ígnea sea levantada de su lugar de formación y expuesta en superficie para que los agentes erosivos la ataquen y degraden, puede que una roca ígnea nunca llegue a la superficie, todo depende de la evolución geológica de la región.

El ciclo de las rocas nunca se acaba, siempre está operando de forma lenta y continua. Es aquí donde mejor se materializan los conceptos de gradualismo - actualismo de los fenómenos geológicos. Las rocas que alcanzaron la superficie son recicladas continuamente pero nosotros solo podemos ver la parte superior del ciclo y debemos deducir los de la parte profunda a partir de evidencias indirectas.
10- Meteorización. Tipos y explicación.
Se llama meteorización a la descomposición de minerales y rocas que ocurre sobre o cerca de la superficie terrestre cuando estos materiales entran en contacto con la atmósfera, hidrosfera y la biosfera. Sin embargo existen varias definiciones más lo que ha hecho que el término signifique diferentes cosas para distintos científicos.
Existen principalmente dos tipos de meteorización: la meteorización química y la meteorización física.A veces se incluye la meteorización biológica como un tercer tipo.La meteorización se considera como un proceso exógeno y es importante entre otras cosas para el estudio de los accidentes geográficos además de los nutrientes en los suelos.

martes, 5 de noviembre de 2013

FORMULACION INORGANICA

FORMULACION INORGANICA


DEFINICIONES:

1- Elemento químico:

Un elemento químico es un tipo de materia constituida por átomos de la misma clase. En su forma más simple posee un número determinado de protones en su núcleo, haciéndolo pertenecer a una categoría única clasificada con el número atómico, aun cuando este pueda desplegar distintas masas atómicas. Es un átomo con características físicas únicas, aquella sustancia que no puede ser descompuesta mediante una reacción química, en otras más simples. No existen dos átomos de un mismo elemento con características distintas y, en el caso de que estos posean número másico distinto, pertenecen al mismo elemento pero en lo que se conoce como uno de sus isótopos. También es importante diferenciar entre un «elementos químicos» de una sustancia simple. Los elementos se encuentran en la tabla periódica de los elementos.


2- Compuesto Químico:

En química, un compuesto es una sustancia formada por la unión de dos o más elementos de la tabla periódica. Una característica esencial es que tiene una fórmula química. Por ejemplo, el agua es un compuesto formado por hidrógeno y oxígeno en la razón de 2 a 1 (en número de átomos): H_2O.
En general, esta razón es debida a una propiedad intrínseca (ver valencia). Un compuesto está formado por moléculas o iones con enlaces estables y no obedece a una selección humana arbitraria. Por este motivo el bronce o el chocolate son denominadas mezclas o aleaciones, pero no compuestos.
Los elementos de un compuesto no se pueden dividir o separar por procesos físicos (decantación, filtración, destilación, etcétera), sino sólo mediante procesos químicos.


3- Oxido:

Un óxido es un compuesto binario que contiene uno o varios átomos de oxígeno (el cual, normalmente, presenta un estado de oxidación ,y otros elementos. Existe una gran variedad de óxidos, los cuales se presentan en los 3 principales estados de agregación de la materia: sólido, líquido y gaseoso, a temperatura ambiente. Casi todos los elementos forman combinaciones estables con oxígeno y muchos en varios estados de oxidación. Debido a esta gran variedad las propiedades son muy diversas y las características del enlace varían desde el típico sólido iónico hasta los enlaces covalentes.
Por ejemplo, son óxidos óxido nítrico (NO) o el dióxido de nitrógeno (NO2). Los óxidos son muy comunes y variados en la corteza terrestre. Los óxidos no metálicos también son llamados anhídridos porque son compuestos que han perdido una molécula de agua dentro de sus moléculas. Por ejemplo, al hidratar anhídrido carbónico en determinadas condiciones puede obtenerse ácido carbónico:
CO2 + H2O→ H2 CO3
En general, los óxidos se pueden sintetizar directamente mediante procesos de oxidación; por ejemplo, óxidos básicos con elementos metálicos (alcalinos, alcalinotérreos o metales de transición) como el magnesio:
2Mg + O2 → 2 MgO;
O bien óxidos ácidos con elementos no metálicos, como el fósforo:
P4 + 5O2 → 2 P2O5


4- HIDRUROS:


Los hidruros son compuestos binarios formados por átomos de hidrógeno y de otro elemento químico, pudiendo ser este metal o no metal. Existen dos tipos de hidruros: los metálicos y los no metálicos
En un hidruro metálico el estado de oxidación del Hidrógeno es 1-; mientras que en un hidruro no metálico, el estado de oxidación del Hidrógeno es 1+.
Además en disolución acuosa pueden aparecer el catión H+ (usualmente en la forma H3O+) y H-. Sin embargo, el catión H2+ no puede existir físicamente ya que el hidrógeno sólo dispone de un electrón de valencia. Por otra parte el tratamiento riguroso de la mecánica cuántica predice que el anión H2- tampoco puede existir, aunque por razones diferentes relacionadas con el hamiltoniano cuántico de un átomo poliectrónico.
Son compuestos formados por hidrógeno y un elemento no metálico. El no metal siempre actúa con su menor número de valencia, por lo cual cada uno de ellos forma un solo hidruro no metálico. Generalmente se encuentran en estado gaseoso a la temperatura ambiente. Algunos manifiestan propiedades ácidas, tales como los hidruros de los elementos flúor, cloro, bromo, yodo, azufre, selenio y telurio; mientras que otros no son ácidos, como el agua, amoníaco, metano, silanos, etc.

5-Sal Binaria:

Sal binaria. Compuesto químico formado por la combinación de un Metal y un No metal, donde el primero trabaja con la mínima valencia.
Son compuestos que se forman por la unión de un elemento metálico con un elemento no metálico, la fórmula general es: MiXj donde M es el elemento metálico, i es la valencia del no metal, X es el elemento no metálico y j es la valencia del metal.

6- Elementos No Metales:


De los 112 elementos que se conocen, sólo 25 son No metales; su Química a diferencia de los Metales, es muy diversa, a pesar de que representa un número muy reducido, la mayoría de ellos son esenciales para los sistemas biológicos (O, C, H, N, P y S). En el grupo de los no metales se incluyen los menos reactivos: los gases nobles. Las propiedades únicas del (H) lo apartan del resto de los elementos en la Tabla Periódica de Elementos.
Los no metales son los elementos situados a la derecha en la Tabla Periódica de Elementos por encima de la línea quebrada de los grupos 14 a 17. (Incluyendo el Hidrógeno). Colocados en orden creciente de número atómico, los elementos pueden agruparse, por el parecido de sus propiedades, en 18 familias o grupos (columnas verticales).
Desde el punto de vista de la Electrónica, los elementos de una familia poseen la misma configuración Electrónica en la última capa, aunque difieren en el número de capas (períodos). Los grupos o familias son 18 y se corresponden con las columnas de la Tabla Periódica de Elementos.


7- Hidróxidos:

Los hidróxidos son un grupo de compuestos químicos formados por un metal y uno o varios aniones hidroxilos, en lugar de oxígeno como sucede con los óxidos.
El hidróxido, combinación que deriva del agua por sustitución de uno de sus átomos de hidrógeno por un metal, está presente en muchas bases. No debe confundirse con hidroxilo, el grupo OH formado por un átomo de oxígeno y otro de hidrógeno, característico de los alcoholes y fenoles.
Los hidróxidos se formulan escribiendo el metal seguido del grupo dependiente con la base de un ion de radical adecuado con hidroxilo; éste va entre paréntesis si el subíndice es mayor de uno. Se nombran utilizando la palabra hidróxido seguida del nombre del metal, con indicación de su valencia, si tuviera más de una. Por ejemplo, el Ni(OH)2 es el Hidróxido de níquel (II) y el Ca(OH)2 es el hidróxido de calcio (véase Nomenclatura Química).
Las disoluciones acuosas de los hidróxidos tienen carácter básico, ya que éstos se disocian en el catión metálico y los iones hidróxido. Esto es así porque el enlace entre el metal y el grupo hidróxido es de tipo iónico, mientras que el enlace entre el oxígeno y el hidrógeno es covalente. Por ejemplo:
NaOH(aq) → Na+(aq) + OH-
Los hidróxidos resultan de la combinación de un óxido básico con el agua. Los hidróxidos también se conocen con el nombre de bases. Estos compuestos son sustancias que en solución producen iones hidroxilo.
En la clasificación mineralógica de Strunz se les suele englobar dentro del grupo de los óxido, aunque hay bibliografías que los tratan como un grupo aparte.

8- Oxácido

Los ácidos oxoácidos u oxiácidos son compuestos ternarios formados por un óxido no metálico y una molécula de agua (H2O).
Su fórmula responde al patrón HaAbOc, donde A es un no metal o metal de transicion.
Ejemplos
  • Ácido sulfúrico (H2SO4). Formado por la combinación de una molécula de H2O con una molécula de óxido sulfúrico SO3:
SO3 + H2O → H2SO4
SO2 + H2O → H2SO3
SO + H2O → H2SO2


9- Oxosales:

Una sal ox(o)ácida, oxosal u oxisal es el producto de sustituir alguno, o todos, los hidrógenos de un oxácido por cationes metálicos, por ejemplo K+, o no metálicos, por ejemplo NH Cuando se sustituyen todos los hidrógenos se forma una oxosal neutra y cuando solo se sustituye una parte una sal ácida.

Características de las oxisales

  • Las sales son compuestos que forman agua oxigenada.
  • La mayoría de las sales son solubles en agua.
  • La mayoría de los carbonatos metales alcalinos son poco solubles en agua.
  • Las sales típicas tienen un punto de fusión alto, baja dureza, y baja compresibilidad.
  • Fundidas o disueltas en agua, conducen la electricidad